
Experiences with digital pen, keyboard and mouse
usability
Beryl Plimmer

Department of Computer Science
University of Auckland

Auckland, New Zealand
+64 9 373 7599

beryl@cs.auckland.ac.nz

ABSTRACT
Digital pens provide nice, natural human computer interaction
for tasks such as annotating documents and sketching. However
interfaces that use a pen alone can be slow and inefficient. Thus
most pen interfaces also support keyboard and mouse input.
Multi-modal input exponentially increases the complexity of
the design and usability of these systems. Here we describe our
usability testing experiences of four different pen-dominant
software tools. One is designed for a digital whiteboard, two for
a Tablet PC and the last for a Tablet PC coupled to a haptic
pen. Our experiences may be of interest to others working with
pen-based software and multi-modal interfaces.

Categories and Subject Descriptors
H5.2. Information interfaces and presentation (e.g., HCI): User
Interfaces. - Graphical user interfaces

General Terms
Design, Human Factors.

Keywords
Usability testing, multi-modal interface, pen-based
computing.

1. INTRODUCTION
Pen and inking is a natural and appealing way to record ideas
and pen based interfaces are increasing in popularity as better
hardware becomes available. However our experiences with
designing and building these systems on standard operating
system components suggest that there are many usability issues
that differ from the standard interaction devices.

There are arguments for designing pen-based interfaces to work
solely with pen input [4]. A pen only interaction space
improves mobility and convenience as the user has only one
input device to consider. However, in our experience, there are
many practical obstacles to providing efficient, easy to use pen-
only input. In essence these problems are a result of replacing a
keyboard and mouse with one pen. A keyboard has
approximately 70 discrete keyboard keys that can be combined
with control keys to provide several hundred unique input

codes and a mouse is a pointer with one or more supplementary
buttons.

In contrast a pen is both a pointing device and input device. Pen
input is often in the form of gestures that need to be recognized
and recognition results are often inaccurate. The pen becomes
an overloaded, unreliable device. Some of the challenges we
have encountered include: accurate text input, unsuitable
standard controls and dialogue boxes, pen button usability.

Text input via a pen can be achieved in two ways: on screen
keyboards, which are slow and error prone; or handwriting
supported by a recognition engine, which is quicker, but also
error prone. With careful design these problems can be
mitigated, however most standard dialogue boxes such as file
open/save rely on text entry. Many other standard interaction
techniques on the Microsoft Operating systems (the operating
systems with most pen support) are accessed via right mouse
buttons. The buttons on pens are difficult to use. As a result of
these limitations many pen-dominant software tools also
support keyboard and mouse input.

Much of the software for multi-modal systems, including pen-
based systems, is experimental. In addition many of these
systems are designed for mobile use. Both of these factors add
to the confusion – the designers, users and usability testers do
not have preexisting knowledge of how thing should be done.
Usability testing mobile devices poses problems around
environment and context of use.

We have developed and usability tested a number of different
pen-based systems. Here we will present our usability testing
experiences of four of these systems: Freeform a digital
whiteboard user interface design tool; InkKit, a Tablet PC
sketch toolkit; Penmarked a Tablet PC document annotation
system and, lastly, a haptic pen writing training system for
visually impaired users. We will briefly describe the purpose
and technology for each system and then its usability testing.
Following this is a discussion of the general challenges of
multi-modal usability testing that we have encountered.

2. FREEFORM
Freeform is a pen-based design environment for user interface
design. It is integrated into the Visual Basic 6 IDE (VB) and
runs on standard Microsoft Windows operating systems [14-16,
18]. It was designed specifically as a collaborative design
environment using digital whiteboards as the main interaction
space (Figure 1). This large interactive display (Lids) is created
by projecting the screen output onto an opaque glass screen that
has a Mimio [6] pen capture bar attached to the side.

 Figure 1: Freeform User Environment

The software has two main interfaces; a sketch canvas for
sketching VB forms (Figure 2) and a storyboard for arranging
the sketches (Figure 3). Because of the limitations of the
recognition engine the sketch canvas has two inking modes –
writing and drawing, there are also modes for editing and
executing. The goal of the Freeform project was to provide a
low-fidelity sketch interface for designing user interfaces and
then compare Freeform with traditional whiteboard design and
the VB form designer.

The software was designed so that as much as possible, the
interaction was on the whiteboard using the Mimio pen as the
interaction device. There is a facility on the Mimio capture bar
to simulate a right mouse button, however we found this very
difficult to use so did not implement any functionality
dependent on it. The keyboard is used to enter text into
standard dialogue boxes for file load/save as, at the time
Freeform was developed (2001) there was no pen support in the
operating system. As a part of the development process we
completed two iterations of design, implementation and
usability testing.

 Figure 2: Freeform Form Sketch

 Figure 3: Freeform Storyboard

The usability studies looked at the central component of the
system: the main sketch-space and resulting VB form.
Nielson’s [7] ‘discount usability study’ methodology was
adopted. Students were asked to design a form for membership
details for a sports club (Figure 2). They were required to
sketch their design on the Lids screen, check its interaction by
‘executing’ the sketch and then use the recognition engine to
create of a VB form. The main questions for the usability study
were: Do people find the hardware usable? How easy is it to
use the sketch-space and is the resulting VB form likely to be
useful? What other features are required?

The sessions were recorded with two video cameras and screen
captures, all pen actions were recorded and we observed the
sessions. After the sessions we reviewed the observation notes
and analysed the tapes to identify interaction problems. All
users created over-sized diagrams; they told us that this was
because of the size of the Mimio pen. Freeform supports
resizing in edit mode by selecting a group of strokes. The
selected strokes are surrounded by a box with corner grab
handles. Because of the parallax error with the glass it was very
difficult for users to grab the handles. We doubled the size of
the handles between the 3rd and 4th usability tests.

There were also problems with the multi-modal nature of the
interface with users writing in drawing mode and drawing in
writing mode: as the separate writing and drawing modes were
required for the recognition engine we added functionality to
select ink and change its mode. The software did not require
any right click or double click actions, however the operating
system did. Right click required a button on the Mimio to be
held down, this made it difficult to use. Double click requires
both the clicks to be on exactly the same pixel – doing this
successfully with a Mimio pen requires quite a bit of practice.
User tended to resort to the keyboard and mouse to complete
double-click or right-click tasks rather than persist with the pen.

The recognition engine is an implementation of Rubine’s [20]
algorithm used in the drawing mode to recognize shapes. In
writing mode primitive word recognition is supported by
combining Rubine’s algorithm with a vocabulary list. The
recognition rates for shapes are about 80%. Word recognition is
much lower; however it is easy to replace an incorrect word by
picking from a list. The expectations for word recognition were
much lower when this study was conducted (2002) and the
participants expressed satisfaction with the success rates.
Further information on this project can be found else where [14,
15, 17, 18].

3. INKKIT
InkKit is a general sketching environment with a recognition
engine for recognizing diagrams such as user interface designs,
graphs and hierarchy charts [2, 3, 11]. There are two views of
the designs, a portfolio that shows all the current sketches and
individual sketches. InkKit has gone through several iterations;
here we will highlight the major usability testing initiatives and
outcomes.

InkKit was designed to leverage the pen support on Tablet PCs
using the Tablet OS. Tablet PCs provide a higher fidelity
interface for collecting ink data. These notebook computers
have pen sensitive screens. Initially (2002) they ran a special
version of the Microsoft Windows XP operating system. It
included character recognition and a supplementary on screen
keyboard/text input panel. We have observed some changes in
the pen support in the OS over the last few years. For example,
Tablet pens have a barrel button for right-click; however this
has proved hard to use so has been supplemented with a push-
and-hold-down action which triggers a right-click option. In
addition, when standard text entry boxes get focus the on screen
text entry function is available and opens adjacent to the text
box, where it initially opened than a the bottom of the screen.
This functionality is now standard in Microsoft Windows Vista.

One of our goals with InkKit was to integrate writing and
drawing into one mode to counter the problems experienced
with this in Freeform. This has required a great deal of work on
the recognition engine as the Microsoft divider performed
poorly[8]. While we continue to work on the technical side of
the problem we now have a modeless writing/drawing space
which has improved usability.

Display space was critical on the Tablet PCs as they have small
screens and the Tablet OS did not work with any of the digital
whiteboards. We ran a number of small experiments trying
different combinations of screen displays and functional
support for drawing. Our solution is to support two screens –
the tablet for drawing on the sketch using a pen and another
screen for showing the portfolio (Figure 4 – this could be a
larger projected image). This is achieved by using the build in
dual display modes, there both views on a single tablet screen
(as standard windows) is also supported for mobile use.

We spent some time surveying people on suitable names for the
different views before settling on portfolio and sketch. After
various trials we clearly delineated the functionality between
the views. On a sketch the user can draw and edit the ink and
run the recognition engine against that sketch. In the portfolio
the ink is not accessible, here the user can move and resize the
sketches, draw connections between sketches and run the
recognition engine against all sketches taking into account
interconnectivity.

The multi-modal nature of this interface has presented some
interaction problems that are not easily solved: the user needs
the pen to work with the sketches on the tablet screen but the
mouse to work with the portfolio when it is shown on the
alternative screen. The device switching is an inconvenience.
Furthermore the operating system has only one pen/mouse
cursor so there is contention for this resource. The new
generation of touch screen whiteboards (e.g.
http://www.nextwindow.com/) and Vista OS may offer better
solutions; we plan to investigate these alternatives shortly.

Figure 4: InkKit User Interface

4. PENMARKED
Penmarked is an annotation tool designed for marking student’s
assignments [5, 12, 13]. While any type of assignment can be
marked using Penmarked there is specific functionality to
support marking computer programs. Our goal with this tool is
a paperless environment where rich ink annotation of the
student’s work is afforded along side full task support for a
class set of assignments. The main interface of Penmarked
(Figure 5) consists of three panes; student list, annotation pane
and grade rubric. There are also a number of icons to access
frequently used functions.

Penmarked was our first Tablet PC application. We conducted a
number of small, informal usability tests during development
and a larger formal usability test towards the end of
development.

Figure 5: A screenshot of Penmarked showing the
student list (a), the mark schedule (b) and the
annotation frame (c).

The informal tests were particularly important to us when
deciding how to configure the grade rubric to support bi-modal
input (either the or keyboard). We found that writing on a
screen accurately required space: to provide enough space
directly in the table would have required about half the
available screen space. We experimented with the built in on
screen keyboard control, however users found it difficult to use
and it obscured a sizable portion of the screen. We also tried an
onscreen number pad (like a calculator pad), and the writing
entry box visible in the bottom right corner of Figure 5.

Users found the writing entry box quicker and easier than the
calculator pad. We implemented this, supported by the Tablet
OS recognition engine with the factoid for numeric data (limits
recognition to digits and mathematical symbols) and range
checked the data against the minimum and maximum values.
Valid data is automatically saved into the selected cell in the
rubric if the user changes the cell selection or after a 500ms
time delay. If invalid data is detected the writing box flashes
red and an alert is sounded. Alternatively the user can enter
marks in the rubric using the keyboard (the same validity
checks are conducted). The process for arriving at this solution
was a series of informal evaluations and explorations of
alternatives.

The formal usability test was conducted with teaching
assistants (TAs) marking real programming assignments. Five
TAs spend an hour marking assignments. Think-aloud protocol
with an observer and video was used. The programming
assignments were small .net programs for a simple windows
form.

We found that persuading the markers to talk was extremely
difficult; much worse than anticipated. They appeared to be
concentrating on the task and seemed to find talking a distrac-
tion. Often when they did speak, it was about the program they
were marking, not Penmarked We attribute this to cognitive
overload due to the cognitive demands of program review [19].

This study exposed a number of usability problems. Most
significant points were noted during the first half hour of each
observation rather than post analysis. Of most interest in this
context were the input modalities. Penmarked was designed to
support pen-only input. However the programs that the TAs
were marking were not designed for the tablet. We set the study
room up with the Tablet PC without a keyboard. However the
TAs wanted to run the students’ programs and enter data into
them. Doing this with the pen and on-screen keyboard was too
slow. During the first session we added a keyboard to the setup.
The TAs tended to use the keyboard for text entry to the student
programs and the marking rubric – often with their non-writing
(left) hand and use the pen in their writing hand for annotating
and mouse actions. In a later focus group discussion about this
software users told us that they found a keyboard more
convenient, but used the software without a keyboard if they
were mobile (e.g. on the bus).

5. HAPTIC PENS
The goal of this software is to assist visually impaired children
to learn to sign their names [9, 10]. Visually impaired people
need to have a repeatable signature for legal documents.
However it is very difficult for them to learn to write as they
can not see the letters to copy or watch physical
demonstrations, nor do they get any visual feedback from their
own writing efforts. The system we devised links a Tablet PC, a
Phantom Omni haptic pen [1] and a tactile drawing surface
(special plastic on a rubber mat Figure 7). This project has been
very challenging both from a design and usability test
perspective.

It is a collaborative environment with a teacher and student
working together: as the teacher writes on the tablet the tablet
pen path is echoed on the phantom pen that the visually
impaired student is holding. The phantom pen scores a line on
the tactile drawing surface that the student can feel. The
phantom user can write independently by holding the barrel
button down. In this mode the phantom ink is echoed onto the
tablet screen. We also implemented a mode where the tablet

pen stroke is converted into a virtual stencil. In this mode the
phantom pen is constrained to the stencil to guide the user
along the stroke. The system also has two audio outputs, voice
output of recognized characters and a sinusoidal tone generated
from the tablet stroke that varies the audio pan and pitch to
represent the user’s current horizontal and vertical position on
the page respectively.

Therefore this system has two users and multiple modalities –
two pens, a tablet screen, a tactile surface (non computer) and
two types of audio.

Usability testing this system presented some unique issues
because of its multi-user, multi-modal nature and the target user
group. The development team is experienced in working with
visually impaired; however this is not the same as being
visually impaired. To a greater extent than any other system in
which I have been involved, we need representative users to
help us with the development. However, there are very few
visually impaired children and there are many researchers
wanting access to them. We were very reluctant to ask visually
impaired children (and their parents) to be involved in the early
usability testing of the system. We recruited visually impaired
adults to be our usability test participants.

We concentrated our testing on the visually impaired users’
interface. Our first VIP user had an informal demo of the
system while we were in the early stages of development. We
set it up with a book for the writing surface as the phantom pen
is designed to work above the desk top (Figure 6). She tried to
detect the pen path on the paper – and she could, but it was
difficult, hence our change to the drawing board (Figure 7).

 Figure 6: First Signature Setup

Four visually impaired adults were recruited for the formal
usability testing. We used Morae™ to record the sessions and
independently logged all the pen data points from both pens.
Our plan was to first familiarize the users with the device and
then to progressively test, train and re-test them on lower case
letters grouped according to shape. Our pilot test indicated that
this was too ambitious a goal. We reduced the task list to letters
similar to ‘o’ – ‘o, c, a, d, e’.

There were interesting issues around the tactile output. The
users want this space to support their spatial orientation.
Following a process of trial and error with the first two users
we found it worked best if they marked the perimeter of the
drawing space by tracing around it with the pen (Figure 7).
They could then orient themselves within the space. As a
section of the plastic became crowded we replaced it and got
them to retrace the area Figure 8.

 Figure 7: Signature Drawing Area

 Figure 8: Signature User Experience

The phantom pen is much larger than a standard pen and it is
attached to a robotic arm. Initially we did not specifically train
the users on how to hold the pen. However, considering the
constraints of the device and visually impaired peoples
unfamiliarity with holding pens we changed our approach to
include specific training on how to hold the pen. There are two
barrel buttons on the phantom pen. During our first demo
session we found that, sighted as well as, our visually impaired
user had trouble using the barrel buttons. We minimized the use
of the barrel buttons, either or both having the same effect and
we use them only to record the phantom user writing
independently. They are still difficult to use and we are
considering other approaches to detecting when the Phantom
user is writing.

The audio feedback from the character recognition was not a
success because of the high error rates. We use the Tablet OS
recognition engine which is more reliable recognizing words
than single characters. The study participants all use standard
computers with voice output for their every day computing.
Having untrustworthy voice output destroyed their confidence
in their writing ability. In contrast the sound feedback was
helpful to two of the users who were having difficulty detecting
the change in height of the pen as it was pull down to the
writing surface at the start of a stroke.

The stencil mode was not useful. The bounds of the stencil
were not clear to the Phantom user and it did not support the
tight collaboration between the two users that worked well in
the other modes. It may be useful for visually impaired user to
work alone, but at this point we are not planning use it.

While most of the development and usability testing has
concentrated on the phantom interface, we reviewed the tablet
interface after the usability test. Initially it had two
visualization spaces for ink, one for the tablet user and the other
for the phantom. With our decision to demote the stencil mode
we removed one of the visualization spaces as only one pen is
actively creating ink at any time (Figure 9).

 Figure 9: Signature Tablet Interface

6. DISCUSSION
Here I have presented our experiences with four different
software tools where a pen is used as one input device. In each
case the pen input alone has been insufficient for efficient
interaction. Usability testing has been an important element of
the success of each of these projects. We have used a variety of
formal and informal usability testing techniques. The informal
techniques have often been integrated with the implementation
phase as a method of exploring alternative approaches.

As with many multimodal systems, pen-based interaction is in
its infancy. We have often found ourselves in the situation of
needing to make decisions about how to implement a particular
feature. There is a small, but growing corpus of research on
usability of pen-dominant interaction. However, often our
projects have required unique solutions. Our approach has been
to brainstorm alternative approaches and then build small test
beds to evaluate them. The evaluations have usually been
informal. Clearly this is not scientifically rigorous, however
when there is little existing transferable knowledge and many
decisions that need to be made it is a practical approach that has
been relatively successful.

Each of the projects presented here has had at least one formal
usability test. For these tests we have observed, videoed and,
except for the Penmarked project, preserved screen captures. In
some we have also recorded supplementary pen data. Two
different specific usability testing setups have been used; a
custom build usability lab at the University of Waikato and
Morae ™. Neither of these setups have had the capability of
preserving or analyzing pen data as opposed to mouse data.

Observation and post-task discussions with the users have, for
us, been the most effective usability testing techniques. At
times we have reviewed the video tapes of sessions to check
particular points. In general this has been when we have noticed
something of interest later in a set of studies and then wondered
whether the same thing occurred with earlier participants. The
collected ink data has been used to analyze and improve the
recognition rates.

There are many assumptions we have made as we designed and
usability tested these systems. Our experience suggests that
there are a range of basic usability problems with pen based
systems: parallax errors on the screens mean we must design
larger interaction points (buttons etc); the barrel buttons on the
pens have proved difficult to use; the nature of pen input
implies the use of recognition engines and the recognition
results are often inaccurate; and standard system controls may
be unsuitable for pen input thus requiring either special controls
be developed or the use of keyboard and mouse. Each of these
usability problems require further investigation to design better
fundamental solutions or interaction techniques to minimize the
impact of the technology limitations.

The multi-modal nature of these systems has added complexity
to both the design and evaluation of the systems. In addition we
are cognizant of the effects of the particular environments
which we have conducted the usability studies. This is a
particular problem with mobile devices where the laboratory
studies may not be representative of mobile use.

7. CONCLUSIONS
The major usability challenges with multi-modal interfaces are
two fold. First, the exponential increase in combinations of
devices as our experience has been that adding one interaction
medium does not remove existing mediums. Second, many of
the additional input modalities are in the form of continuous
data (such as digital ink, speech) that must be interpreted and
consistently accurate recognition is and outstanding problem.

 ACKNOWLEDGMENTS

I would like to acknowledge the contributions of the various
students and usability test participants that have contributed to
these project.

8. REFERENCES

[1] Sensible Technologies,
http://www.sensable.com/haptic-phantom-omni.htm,
accessed on 8 June 2007
[2] Chung, R., Mirica, P., Plimmer, B., InkKit: A
Generic Design Tool for the Tablet PC, in proc CHINZ 05,
ACM, (2005), 29-30
[3] Freeman, I., Plimmer, B., Connector Semantics for
Sketched Diagram Recognition, in proc AUIC, ACM, (2007),
71-78
[4] Jarrett, R., Su, P., Building Tablet PC applications,
Microsoft Press, (2003),

[5] Mason, P., Plimmer, B., A Critical Comparison of
Usability Testing Methodologies, in proc NACCQ, NACCQ,
(2005), 255-258
[6] Mimio, Mimio, http://www.virtualink.com, accessed
on 12 June 2001
[7] Nielsen, J., Usability Engineering, Morgan
Kaufmann, (1994),
[8] Patel, R., Plimmer, B., Grundy, J., Ihaka, R., Ink
Features for Diagram Recognition, Sketch Based Interfaces and
Modeling IEEE, (2007),
[9] Plimmer, B., Crossan, A., Brewster, S., Computer
Supported Non-visual signature training, in proc First
International Workshop on Haptic and Audio Interaction
Design, (2006), 1-4
[10] Plimmer, B., Crossan, A., Brewster, S., Patel, R.,
Designing a Haptic Interface for Teaching Visually Impaired
Children Writing, in proc OZCHI 2007, (2007), in press
[11] Plimmer, B., Freeman, I., A Toolkit Approach to
Sketched Diagram Recognition, in proc HCI, eWiC, (2007), in
press
[12] Plimmer, B., Mason, P., Designing an Environment
for Annotating and Grading Student Assignments, in proc
OZCHI, (2004), 45-53
[13] Plimmer, B., Mason, P., A Pen-based Paperless
Environment for Annotating and Marking Student
Assignments, in proc AUIC, CRPIT, (2006), 27-34
[14] Plimmer, B. E., Apperley, M., Evaluating a Sketch
Environment for Novice Programmers, in proc SIGCHI, ACM,
(2003), 1018-1019
[15] Plimmer, B. E., Apperley, M., Freeform: A Tool for
Sketching Form Designs, in proc BHCI, (2003), 183-186
[16] Plimmer, B. E., Apperley, M., Freeform: An informal
environment for interface prototyping, in proc CHINZ, (2002),
11-12
[17] Plimmer, B. E., Apperley, M., INTERACTING with
sketched interface designs: an evaluation study., in proc SigChi
2004, ACM, (2004), 1337-1340
[18] Plimmer, B. E., Apperley, M., Software for Students
to Sketch Interface Designs, in proc Interact, (2003), 73-80
[19] Robins, A., Rountree, J., Rountree, N., Learning and
teaching programming: A review and discussion, Computer
Science Education, 13, 2, (2003), 137-172
[20] Rubine, D., Specifying gestures by example, in proc
Proceedings of Siggraph '91, ACM, (1991), 329-337

